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1 Stochastic Process

Definition 1.1 (Stochastic Process)
A stochastic process X = {X(t, w), t ∈ T} is a collection of random variables. We often

interpret t as time and call X(t) the state of the process at time t.

Definition 1.2 (Sample Path)
Any realization of X is called a sample path.

For example, when t is given, then you get a random variable X(w), which characterizes

the nature of stochastic. When w is given, then you get a sample path, you get a constant

at every point of t, which characterizes the nature of process.

Definition 1.3 (Independent Increments)
A continuous stochastic process {X(t), t ∈ T} is said to have independent increments if

for all t0 < t1 < ... < tn, the random variables

X(t1)−X(t0), ..., X(tn)−X(tn−1)

are independent.

This means the changes in its value over nonoverlapping time intervals are independent.

Definition 1.4 (Stationary increments)
A continuous stochastic process {X(t), t ∈ T} is said to possess stationary increments if

X(t+ s)−X(t) has the same distribution for all t.

This means the distribution of the change in value between any two points depends only

on the distance between those points.

Definition 1.5 (Counting Process)
A stochastic process {N(t), t ≥ 0} is said to be a counting process if N(t) represents the

total number of "events" that have occurred up to time t. A counting process N(t) must

satisfy

N(t) ≥ 0



2 Poisson Process

N(t) is integer valued

If s < t, then N(s) ≤ N(t)

For s < t, N(t)−N(s) equals the number of events occured in the interval (s, t]

2 Poisson Process

Definition 2.1 (Poisson Process from events in interval 1)
A counting process {N(t), t ≥ 0} is said to be a Poisson process having rate λ, λ > 0, if

N(0) = 0

The process has independent increments

The number of events in any interval of length t is Poisson distributed with mean

λt, i.e., for all s, t ≥ 0,

P{N(t+ s)−N(s) = n} = e−λt (λt)
n

n!
, n = 0, 1...

Remark The condition 3 also reflects that a Poisson process has stationary increments and

E[N(t)] = λt, which explains why λ is called the rate of the process.

Proof On the basis of Erlang distribution, we can derive P{N(t) = n}

P {N(t) = n | Sn = τ} = P {Xn+1 > t− τ} = e−λ(t−τ)

P{N(t) = n} =

∫ t

0
P {N(t) = n | Sn = τ} fSn(τ)ds =

∫ t

0
e−λ(t−τ) · λe−λτ (λτ)

n−1

(n− 1)!
· dτ

= e−λt

∫ t

0
λ
(λτ)n−1

(n− 1)!
dτ = e−λt

∫ t

0
d
(λτ)n

n!
= e−λt (λt)

n

n!

■

Definition 2.2 (Poisson Process from events in interval 2)
A counting process {N(t), t ≥ 0} is said to be a Poisson process having rate λ, λ > 0, if

N(0) = 0

the process has stationary and independent increments

P{N(h) = 1} = λh+ o(h)

P{N(h) ≥ 2} = o(h)

Where a function f is said to be o(h) if limh→0
f(h)
h = 0. The last two conditions imply

P{N(h) = 0} = 1− λh+ o(h)

Theorem 2.1 (Definition 2.1 and 2.2 are equivalent)
Just prove the third condition of definition 2.1 is equal to the last two conditions of

definition 2.2.

When it comes to 1 → 2, just set t = h, s = 0, n = 0, 1, and expand it by Taylor’s

formula.
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3 Interarrival and Waiting time distribution

When it comes to 2 → 1, just imagine an interval [0, t] which is subdivided into k equal

parts where k is very large. Hence, N(t) equal to the number of subintervals in which

an event occurs. By stationary and independent increments, this number will have a

binomial distribution with k, p = λt/k+o(t/k), and this binomial distribution converges

to a Poisson distribution with parameter λ as n → ∞.

3 Interarrival and Waiting time distribution

Theorem 3.1 (Sequence of interarrival times in Poisson process)
Consider a Poisson process, and let X1 denote the time of the first event. Further, for

n ≥ 1, letXn denote the time between the (n − 1)st and the nth events. The sequence

{Xn, n ≥ 1} is called the sequence of interarrival times.

Particularly, Xn, n = 1, 2... are independent identically distributed exponential random

variables having mean 1/λ.

Proof At first, we prove that X1 has an exponential distribution with mean 1/λ.

P {X1 > t} = P{N(t) = 0} = e−λt

Then we prove that X2 is an exponential random variable with mean 1/λ too.

P {X2 > t | X1 = s}

=P {0 events in (s, s+ t] | X1 = s}

=P{0 events in (s, s+ t]} independent increments

=P{N(t) = 0} = e−λt stationary increments

P {X2 > t} =

∫
s
P {X2 > t | X1 = s} fX1(s)ds Lemma ??

=

∫
s
e−λtfX1(s)ds = e−λt

Next we prove that X2 is independent of X1.

P {X1 > t1, X2 > t2} =

∫
S
P {X1 > t1, X2 > t2 | X1 = s} fX1(s)ds Lemma ??

=

∫ ∞

s=t1

P {X1 > t1, X2 > t2 | X1 = s} fX1(s)ds Trim the integration range

=

∫ ∞

s=t1

P {X2 > t2 | X1 = s} fX1(s)ds

=

∫ ∞

s=t1

e−λt2fX1(s)ds

=P {X1 > t1} e−λt2

=P {X1 > t1}P {X2 > t2}
Repeating the same argument yields the desired result. ■
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4 Arrival Times

Definition 3.1 (Poisson Process from waiting time distribution)
Consider a sequence {Xn, n ≥ 1} of independent identically distributed exponential

random variables each having mean 1/λ. Define a counting process such that the nth

event of this process occurs at time Sn, where

Sn = X1 + ...+Xn

The resultant counting process {N(t), t ≥ 0} is Poisson with rate λ.

Remark Sn is referred to as the arrival time of the nth event or the waiting time until the nth

event, and has an Erlang or gamma distribution with parameters n and λ, thus we can get its

density function simply, or we can deduce it as follows.

Sn ≤ t ⇐⇒ N(t) ≥ n

P {Sn ≤ t} = P{N(t) ≥ n} = 1−
n−1∑
j=0

P{N(t) = j}

= 1− e−λt −
n−1∑
j=1

e−λt (λt)
j

j!

f(t) = λe−λt −
n−1∑
j=1

(
−λe−λt (λt)

j

j!
+ λe−λt (λt)

j−1

(j − 1)!

)

= λe−λt +

n−1∑
j=1

λe−λt (λt)
j

j!
−

n−1∑
j=1

λe−λt (λt)
j−1

(j − 1)!

=
n−1∑
j=0

λe−λt (λt)
j

j!
−

n−2∑
j=0

λe−λt (λt)
j

j!
= λe−λt (λt)

n−1

(n− 1)!

4 Arrival Times

Definition 4.1 (Order statistics)
Let Y1, ..Yn be n random variables. We say that Y(1), ...Y(n) are the order statistics

corresponding to Y1, ...Yn if Y(k) is the kth smallest value among Y1, ..Yn, k = 1, ...n. If

Yi are i.i.d continuous random variables with probability density f , then the joint density

of the order statistics Y(1), ...Y(n) is given by

fos (y1, y2, . . . , yn) = n!

n∏
i=1

f (yi) , y1 < y2 < · · · < yn

Remark Note thatn! comes from: Y(1), ...Y(n) = (y1, ...yn) ⇐⇒ Y1, ..Yn has a permutation of y1, ...yn.
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4 Arrival Times

Theorem 4.1 (Uniform arrival time)
Given that N(t) = n, the n arrival times S1, ..., Sn have the same distribution as the

order statistics corresponding to n independent random variables uniformly distributed

on the interval (0, t). The joint density of the order statistics Y(1), Y(2), . . . , Y(n) is

fos (y1, y2, . . . , yn) =
n!

tn
, 0 < y1 < y2 < · · · < yn < t

Proof Firstly, we show that P{X1 < s|N(t) = 1} = s
t ∀0 ≤ s ≤ t is uniformly distributed

over [0, t].

S1|N(t) = 1 ⇐⇒ X1|N(t) = 1

P {X1 < s | N(t) = 1} =
P {X1 < s,N(t) = 1}

P{N(t) = 1}

=
P{1 event in [0, s), 0 events in [s, t)}

P{N(t) = 1}

=
P{1 event in [0, s)}P{0 events in [s, t)}

P{N(t) = 1}

=
λse−λs · e−λ(t−s)

λte−λt
=

s

t

Let 0 = t0 < ... < tn < t. And then we choose t01, ...t
0
n+1 such that 0 = t0 ≤ t01 < ... <

t0n < tn < t0n+1 = t.

P
{
t0i < Si ≤ ti, i = 1, 2, . . . , n | N(t) = n

}

=

P

 exactly 1 event in
(
t0i , ti

]
, i = 1, . . . , n,

no events in
(
ti−1, t

0
i

]
, i = 1, . . . , n+ 1


P (N(t) = n)

=

∏n
i=1

(
e−λ(ti−t0i )λ

(
ti − t0i

))∏n+1
i=1 e−λ(t0i−ti−1)

e−λt(λt)n/n!

=
n!

tn
·

n∏
i=1

(
ti − t0i

)
· exp

(
λt− λ

n∑
i=1

(
ti − t0i

)
− λ

n+1∑
i=1

(
t0i − ti−1

))

=
n!

tn

n∏
i=1

(
ti − t0i

)
By differentiating it with respect to t1, ...tn, we obtain the conditional density of S1, ..Sn

given that N(t) = n is as follows for any 0 < t1... < tn < t.

f (t1, . . . , tn) =
∂n

∂t1∂t2 · · · ∂tn
P
{
t0i < Si ≤ ti, i = 1, 2, . . . , n | N(t) = n

}
=

∂n

∂t1∂t2 · · · ∂tn
n!

tn

n∏
i=1

(
ti − t0i

)
=

∂n

∂t2 · · · ∂tn
n!

tn

n∏
i=2

(
ti − t0i

)
=

∂n

∂t3 · · · ∂tn
n!

tn

n∏
i=3

(
ti − t0i

)
= · · · = n!

tn
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5 Split or Merge

■

Example 4.1Expectation of travelers’ waiting times Suppose that travelers arrive with a

Poisson process with rate λ. If the train departs at time t, compute the expected sum of waiting

times of travelers E[
∑N(t)

i=1 (t− Si)].

Solution

E

N(t)∑
i=1

(t− Si) | N(t) = n

 = E

[
n∑

i=1

(t− Si) | N(t) = n

]

= nt− E

[
n∑

i=1

Si | N(t) = n

]

E

[
n∑

i=1

Si | N(t) = n

]
= E

[
n∑

i=1

U(i)

]
by Theorem 4.1

= E

[
n∑

i=1

Ui

]

=
nt

2

E

N(t)∑
i=1

(t− Si) | N(t) = n

 =
nt

2

E

N(t)∑
i=1

(t− Si)

 = E

E
N(t)∑

i=1

(t− Si) | N(t)


=

∞∑
n=0

E

N(t)∑
i=1

(t− Si) |N(t) = n|P{N(t) = n}

=
∞∑
n=0

nt

2
P{N(t) = n} =

t

2
E[N(t)] =

λt2

2

Alternatively, we have

E

N(t)∑
i=1

(t− Si) | N(t) = n

 =
nt

2
→ E

N(t)∑
i=1

(t− Si) | N(t)

 =
N(t)t

2

E

N(t)∑
i=1

(t− Si)

 = E

E
N(t)∑

i=1

(t− Si) | N(t)

 = E

[
N(t)t

2

]
=

λt2

2

Example 4.2Distribution of Sn Let E denote the event that exactly n questions by time 1, given

the event E, what is the pdf of Sn?

Solution Conditioning on E, Sn has the same distribution as max {U1, . . . , Un}, where

U1, . . . , Un are iid uniform distribution random variables in [0, 1].

P (Sn ≤ y | E) =
n∏

i=1

P (Ui ≤ y) = yn
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5 Split or Merge

5 Split or Merge

Theorem 5.1 (Split a Poisson Process)
Suppose that each event of a Poisson process with rate λ is classified as being either a

type-I or type-II event. And the event occurs at time s will be classified as type-I with

probability P (s) and type-II with probability 1− P (s).

If Ni(t) represents the number of type-i events that occur by time t, i = 1, 2, then N1(t)

and N2(t) are independent Poisson random variables having respective means λtp and

λt(1− p), where

p =
1

t

∫ t

0
P (s)ds

Proof
P {N1(t) = n,N2(t) = m}

=

∞∑
k=0

P {N1(t) = n,N2(t) = m | N(t) = k}P{N(t) = k}

=P {N1(t) = n,N2(t) = m | N(t) = n+m}P{N(t) = n+m}

Consider an event occurs at time s, the probability that it would be a type-I event would be

P (s). By theorem 4.1 this event will have occured uniformly distributed on (0, t). It follows that

the probability that it would be a type-I event is p independently of the other events.

p =
1

t

∫ t

0
P (s)ds

Thus we can see P {N1(t) = n,N2(t) = m | N(t) = n+m} as the probability of n suc-

cess and m failures in n+m independent trials.

P {N1(t) = n,N2(t) = m}

=P {N1(t) = n,N2(t) = m | N(t) = n+m}P{N(t) = n+m}

=
(n+m)!

n!m!
pn(1− p)m · e−λt (λt)

n+m

(n+m)!

=e−λpt (λpt)
n

n!
· e−λ(1−p)t (λ(1− p)t)m

m!

P {N1(t) = n} =
∑
m

P {N1(t) = n,N2(t) = m}

=

(
e−λpt (λpt)

n

n!

)∑
m

(
e−λ(1−p)t (λ(1− p)t)m

m!

)
= e−λpt (λpt)

n

n!

Similarly, we show that N1(t) is Poisson with mean λpt, N2(t) is Poisson with mean

λ(1− p)t, and N1(t), N2(t) are independent. ■
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6 Compound Poisson Process

Theorem 5.2 (Merger)
Merging of independent Poisson processes is Poisson.

Proof
■

6 Compound Poisson Process

Definition 6.1 (Compound Poisson Random variable)
Let X1, X2, ... be a sequence of iid random variables having distribution F , and suppose

that this sequence is independent of N , a Poisson random variable with mean λ. The

random variable

W =
N∑
i=1

Xi

is said to be a compound Poisson random variable with Poisson parameter λ and compo-

nent distribution F .

Definition 6.2 (Compound Poisson Process)
A stochastic process {X(t), t ≥ 0} is said to be a compound Poisson process if it can be

represented, for t ≥ 0, by

X(t) =

N(t)∑
i=1

Xi

where {N(t), t ≥ 0} is a Poisson process, and {Xi, i = 1, 2, . . .} is a family of iid random

variables that is independent of the process {N(t), t ≥ 0}. Thus, if {X(t), t ≥ 0} is a

compound Poisson process then X(t) is a compound Poisson random variable.

Lemma 6.1 ((Song, 2020, PS. 1))
Suppose for a Poisson process with rate λ, an event occurring at time s contributes a

random amount having distribution Fs, s ≥ 0. Let W denote the sum of the contributions

up to time t, i.e., W =
∑N(t)

i=1 Xi. Then W is a compound Poisson random variable, with

the same distribution as
∑N(t)

i=1 X̃i, where X̃i is independent of N(t) and are iid with

F (x) = 1
t

∫ t
0 Fs(x)ds.
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7 Conditional Poisson Process

7 Conditional Poisson Process

Definition 7.1 (Conditional Poisson process)
Let Λ be a positive random variable having distribution G and let {N(t), t ≥ 0} be a

counting process such that, given that Λ = λ, {N(t), t ≥ 0} is a Poisson process having

rate λ. The process {N(t), t ≥ 0} is then called a conditional Poisson process.

Remark Note that a conditional Poisson process still possess stationary increment, but do not

possess independent increment.

Lemma 7.1 (Property of Conditional Poisson process)

P{N(t+ s)−N(s) = n} = E[P{N(t+ s)−N(s) = n | Λ}]

=

∫ ∞

0
P{N(t+ s)−N(s) = n | Λ = λ}dG(λ)

=

∫ ∞

0
e−λt (λt)

n

n!
dG(λ)

The conditional distribution of Λ can be calculated by

P{Λ ≤ x,N(t) = n} = E[P{Λ ≤ x,N(t) = n | ∧}]

=

∫ ∞

λ=0
P{Λ ≤ x,N(t) = n | Λ = λ}dG(λ)

=

∫ x

λ=0
P{N(t) = n | Λ = λ}dG(λ)

=

∫ x

λ=0
e−λt(λt)n/n!dG(λ)

P{Λ ≤ x | N(t) = n} =
P{Λ ≤ x,N(t) = n}

P{N(t) = n}
=

∫ x
λ=0 e

−λt(λt)n/n!dG(λ)∫∞
λ=0 e

−λt(λt)n/n!dG(λ)

=

∫ x
λ=0 e

−λt(λt)ndG(λ)∫∞
λ=0 e

−λt(λt)ndG(λ)
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