Note on Poisson Process

Zepeng CHEN
The HK PolyU

Date: January 12, 2023

1 Stochastic Process

Definition 1.1 (Stochastic Process)

A stochastic process $X=\{X(t, w), t \in T\}$ is a collection of random variables. We often interpret t as time and call $X(t)$ the state of the process at time t.

Definition 1.2 (Sample Path)

Any realization of X is called a sample path.
For example, when t is given, then you get a random variable $X(w)$, which characterizes the nature of stochastic. When w is given, then you get a sample path, you get a constant at every point of t, which characterizes the nature of process.

Definition 1.3 (Independent Increments)

A continuous stochastic process $\{X(t), t \in T\}$ is said to have independent increments if for all $t_{0}<t_{1}<\ldots<t_{n}$, the random variables

$$
X\left(t_{1}\right)-X\left(t_{0}\right), \ldots, X\left(t_{n}\right)-X\left(t_{n-1}\right)
$$

are independent.
This means the changes in its value over nonoverlapping time intervals are independent.

Definition 1.4 (Stationary increments)

A continuous stochastic process $\{X(t), t \in T\}$ is said to possess stationary increments if $X(t+s)-X(t)$ has the same distribution for all t.
This means the distribution of the change in value between any two points depends only on the distance between those points.

Definition 1.5 (Counting Process)

A stochastic process $\{N(t), t \geq 0\}$ is said to be a counting process if $N(t)$ represents the total number of "events" that have occurred up to time t. A counting process $N(t)$ must satisfy

- $N(t) \geq 0$
- $N(t)$ is integer valued
- If $s<t$, then $N(s) \leq N(t)$
- For $s<t, N(t)-N(s)$ equals the number of events occured in the interval $(s, t]$

2 Poisson Process

Definition 2.1 (Poisson Process from events in interval 1)

A counting process $\{N(t), t \geq 0\}$ is said to be a Poisson process having rate $\lambda, \lambda>0$, if

- $N(0)=0$
- The process has independent increments
- The number of events in any interval of length t is Poisson distributed with mean λt, i.e., for all $s, t \geq 0$,

$$
P\{N(t+s)-N(s)=n\}=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}, \quad n=0,1 \ldots
$$

Remark The condition 3 also reflects that a Poisson process has stationary increments and $E[N(t)]=\lambda t$, which explains why λ is called the rate of the process.
Proof On the basis of Erlang distribution, we can derive $P\{N(t)=n\}$

$$
\begin{aligned}
& P\left\{N(t)=n \mid S_{n}=\tau\right\}=P\left\{X_{n+1}>t-\tau\right\}=e^{-\lambda(t-\tau)} \\
P\{N(t)=n\}= & \int_{0}^{t} P\left\{N(t)=n \mid S_{n}=\tau\right\} f_{S_{n}}(\tau) d s=\int_{0}^{t} e^{-\lambda(t-\tau)} \cdot \lambda e^{-\lambda \tau} \frac{(\lambda \tau)^{n-1}}{(n-1)!} \cdot d \tau \\
= & e^{-\lambda t} \int_{0}^{t} \lambda \frac{(\lambda \tau)^{n-1}}{(n-1)!} d \tau=e^{-\lambda t} \int_{0}^{t} d \frac{(\lambda \tau)^{n}}{n!}=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}
\end{aligned}
$$

Definition 2.2 (Poisson Process from events in interval 2)

A counting process $\{N(t), t \geq 0\}$ is said to be a Poisson process having rate $\lambda, \lambda>0$, if

- $N(0)=0$
- the process has stationary and independent increments
- $P\{N(h)=1\}=\lambda h+o(h)$
- $P\{N(h) \geq 2\}=o(h)$

Where a function f is said to be $o(h)$ if $\lim _{h \rightarrow 0} \frac{f(h)}{h}=0$. The last two conditions imply

$$
P\{N(h)=0\}=1-\lambda h+o(h)
$$

Theorem 2.1 (Definition 2.1 and 2.2 are equivalent)

Just prove the third condition of definition 2.1 is equal to the last two conditions of definition 2.2.
When it comes to $1 \rightarrow 2$, just set $t=h, s=0, n=0,1$, and expand it by Taylor's formula.

When it comes to $2 \rightarrow 1$, just imagine an interval $[0, t]$ which is subdivided into k equal parts where k is very large. Hence, $N(t)$ equal to the number of subintervals in which an event occurs. By stationary and independent increments, this number will have a binomial distribution with $k, p=\lambda t / k+o(t / k)$, and this binomial distribution converges to a Poisson distribution with parameter λ as $n \rightarrow \infty$.

3 Interarrival and Waiting time distribution

Theorem 3.1 (Sequence of interarrival times in Poisson process)

Consider a Poisson process, and let X_{1} denote the time of the first event. Further, for $n \geq 1$, let X_{n} denote the time between the $(n-1)$ st and the nth events. The sequence $\left\{X_{n}, n \geq 1\right\}$ is called the sequence of interarrival times.
Particularly, $X_{n}, n=1,2 \ldots$ are independent identically distributed exponential random variables having mean $1 / \lambda$.

Proof At first, we prove that X_{1} has an exponential distribution with mean $1 / \lambda$.

$$
P\left\{X_{1}>t\right\}=P\{N(t)=0\}=e^{-\lambda t}
$$

Then we prove that X_{2} is an exponential random variable with mean $1 / \lambda$ too.

$$
\begin{aligned}
& P\left\{X_{2}>t \mid X_{1}=s\right\} \\
&= P\left\{0 \text { events in }(s, s+t] \mid X_{1}=s\right\} \\
&= P\{0 \text { events in }(s, s+t]\} \quad \text { independent increments } \\
&= P\{N(t)=0\}=e^{-\lambda t} \quad \text { stationary increments } \\
& P\left\{X_{2}>t\right\}=\int_{s} P\left\{X_{2}>t \mid X_{1}=s\right\} f_{X_{1}}(s) d s \quad \text { Lemma ?? } \\
&= \int_{s} e^{-\lambda t} f_{X_{1}}(s) d s=e^{-\lambda t}
\end{aligned}
$$

Next we prove that X_{2} is independent of X_{1}.

$$
\begin{aligned}
& P\left\{X_{1}>t_{1}, X_{2}>t_{2}\right\}=\int_{S} P\left\{X_{1}>t_{1}, X_{2}>t_{2} \mid X_{1}=s\right\} f_{X_{1}}(s) d s \\
= & \int_{s=t_{1}}^{\infty} P\left\{X_{1}>t_{1}, X_{2}>t_{2} \mid X_{1}=s\right\} f_{X_{1}}(s) d s \\
= & \int_{s=t_{1}}^{\infty} P\left\{X_{2}>t_{2} \mid X_{1}=s\right\} f_{X_{1}}(s) d s \\
= & \int_{s=t_{1}}^{\infty} e^{-\lambda t_{2}} f_{X_{1}}(s) d s \\
= & P\left\{X_{1}>t_{1}\right\} e^{-\lambda t_{2}} \\
= & P\left\{X_{1}>t_{1}\right\} P\left\{X_{2}>t_{2}\right\}
\end{aligned}
$$

Repeating the same argument yields the desired result.

Definition 3.1 (Poisson Process from waiting time distribution)

Consider a sequence $\left\{X_{n}, n \geq 1\right\}$ of independent identically distributed exponential random variables each having mean $1 / \lambda$. Define a counting process such that the nth event of this process occurs at time S_{n}, where

$$
S_{n}=X_{1}+\ldots+X_{n}
$$

The resultant counting process $\{N(t), t \geq 0\}$ is Poisson with rate λ.

Remark S_{n} is referred to as the arrival time of the nth event or the waiting time until the nth event, and has an Erlang or gamma distribution with parameters n and λ, thus we can get its density function simply, or we can deduce it as follows.

$$
\begin{gathered}
S_{n} \leq t \Longleftrightarrow N(t) \geq n \\
P\left\{S_{n} \leq t\right\}=P\{N(t) \geq n\}=1-\sum_{j=0}^{n-1} P\{N(t)=j\} \\
=1-e^{-\lambda t}-\sum_{j=1}^{n-1} e^{-\lambda t} \frac{(\lambda t)^{j}}{j!} \\
f(t)=\lambda e^{-\lambda t}-\sum_{j=1}^{n-1}\left(-\lambda e^{-\lambda t} \frac{(\lambda t)^{j}}{j!}+\lambda e^{-\lambda t} \frac{(\lambda t)^{j-1}}{(j-1)!}\right) \\
=\lambda e^{-\lambda t}+\sum_{j=1}^{n-1} \lambda e^{-\lambda t} \frac{(\lambda t)^{j}}{j!}-\sum_{j=1}^{n-1} \lambda e^{-\lambda t} \frac{(\lambda t)^{j-1}}{(j-1)!} \\
=\sum_{j=0}^{n-1} \lambda e^{-\lambda t} \frac{(\lambda t)^{j}}{j!}-\sum_{j=0}^{n-2} \lambda e^{-\lambda t} \frac{(\lambda t)^{j}}{j!}=\lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}
\end{gathered}
$$

4 Arrival Times

Definition 4.1 (Order statistics)

Let $Y_{1}, . . Y_{n}$ be n random variables. We say that $Y_{(1)}, \ldots Y_{(n)}$ are the order statistics corresponding to $Y_{1}, \ldots Y_{n}$ if $Y_{(k)}$ is the kth smallest value among $Y_{1}, . . Y_{n}, k=1, \ldots n$. If Y_{i} are i.i.d continuous random variables with probability density f, then the joint density of the order statistics $Y_{(1)}, \ldots Y_{(n)}$ is given by

$$
f_{\mathrm{os}}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=n!\prod_{i=1}^{n} f\left(y_{i}\right), \quad y_{1}<y_{2}<\cdots<y_{n}
$$

Remark Note that n ! comes from: $Y_{(1)}, \ldots Y_{(n)}=\left(y_{1}, \ldots y_{n}\right) \Longleftrightarrow Y_{1}, . . Y_{n}$ has a permutation of $y_{1}, \ldots y_{n}$.

Theorem 4.1 (Uniform arrival time)

Given that $N(t)=n$, the n arrival times S_{1}, \ldots, S_{n} have the same distribution as the order statistics corresponding to n independent random variables uniformly distributed on the interval $(0, t)$. The joint density of the order statistics $Y_{(1)}, Y_{(2)}, \ldots, Y_{(n)}$ is

$$
f_{o s}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\frac{n!}{t^{n}}, \quad 0<y_{1}<y_{2}<\cdots<y_{n}<t
$$

Proof Firstly, we show that $P\left\{X_{1}<s \mid N(t)=1\right\}=\frac{s}{t} \quad \forall 0 \leq s \leq t$ is uniformly distributed over $[0, t]$.

$$
\begin{aligned}
S_{1} \mid N(t) & =1 \Longleftrightarrow X_{1} \mid N(t)=1 \\
P\left\{X_{1}<s \mid N(t)=1\right\} & =\frac{P\left\{X_{1}<s, N(t)=1\right\}}{P\{N(t)=1\}} \\
& =\frac{P\{1 \text { event in }[0, s), 0 \text { events in }[s, t)\}}{P\{N(t)=1\}} \\
& =\frac{P\{1 \text { event in }[0, s)\} P\{0 \text { events in }[s, t)\}}{P\{N(t)=1\}} \\
& =\frac{\lambda s e^{-\lambda s} \cdot e^{-\lambda(t-s)}}{\lambda t e^{-\lambda t}}=\frac{s}{t}
\end{aligned}
$$

Let $0=t_{0}<\ldots<t_{n}<t$. And then we choose $t_{1}^{0}, \ldots t_{n+1}^{0}$ such that $0=t_{0} \leq t_{1}^{0}<\ldots<$ $t_{n}^{0}<t_{n}<t_{n+1}^{0}=t$.

$$
\begin{aligned}
& P\left\{t_{i}^{0}<S_{i} \leq t_{i}, i=1,2, \ldots, n \mid N(t)=n\right\} \\
= & \frac{P\left\{\begin{array}{c}
\text { exactly } 1 \text { event in }\left(t_{i}^{0}, t_{i}\right], i=1, \ldots, n, \\
\text { no events in }\left(t_{i-1}, t_{i}^{0}\right], i=1, \ldots, n+1
\end{array}\right\}}{P(N(t)=n)} \\
= & \frac{\prod_{i=1}^{n}\left(e^{-\lambda\left(t_{i}-t_{i}^{0}\right)} \lambda\left(t_{i}-t_{i}^{0}\right)\right) \prod_{i=1}^{n+1} e^{-\lambda\left(t_{i}^{0}-t_{i-1}\right)}}{e^{-\lambda t}(\lambda t)^{n} / n!} \\
= & \frac{n!}{t^{n}} \cdot \prod_{i=1}^{n}\left(t_{i}-t_{i}^{0}\right) \cdot \exp \left(\lambda t-\lambda \sum_{i=1}^{n}\left(t_{i}-t_{i}^{0}\right)-\lambda \sum_{i=1}^{n+1}\left(t_{i}^{0}-t_{i-1}\right)\right) \\
= & \frac{n!}{t^{n}} \prod_{i=1}^{n}\left(t_{i}-t_{i}^{0}\right)
\end{aligned}
$$

By differentiating it with respect to $t_{1}, \ldots t_{n}$, we obtain the conditional density of $S_{1}, \ldots S_{n}$ given that $N(t)=n$ is as follows for any $0<t_{1} \ldots<t_{n}<t$.

$$
\begin{aligned}
f\left(t_{1}, \ldots, t_{n}\right) & =\frac{\partial^{n}}{\partial t_{1} \partial t_{2} \cdots \partial t_{n}} P\left\{t_{i}^{0}<S_{i} \leq t_{i}, i=1,2, \ldots, n \mid N(t)=n\right\} \\
& =\frac{\partial^{n}}{\partial t_{1} \partial t_{2} \cdots \partial t_{n}} \frac{n!}{t^{n}} \prod_{i=1}^{n}\left(t_{i}-t_{i}^{0}\right)=\frac{\partial^{n}}{\partial t_{2} \cdots \partial t_{n}} \frac{n!}{t^{n}} \prod_{i=2}^{n}\left(t_{i}-t_{i}^{0}\right) \\
& =\frac{\partial^{n}}{\partial t_{3} \cdots \partial t_{n}} \frac{n!}{t^{n}} \prod_{i=3}^{n}\left(t_{i}-t_{i}^{0}\right)=\cdots=\frac{n!}{t^{n}}
\end{aligned}
$$

Example 4.1Expectation of travelers' waiting times Suppose that travelers arrive with a Poisson process with rate λ. If the train departs at time t, compute the expected sum of waiting times of travelers $E\left[\sum_{i=1}^{N(t)}\left(t-S_{i}\right)\right]$.
Solution

$$
\begin{aligned}
& E\left[\sum_{i=1}^{N(t)}\left(t-S_{i}\right) \mid N(t)=n\right]=E\left[\sum_{i=1}^{n}\left(t-S_{i}\right) \mid N(t)=n\right] \\
&=n t-E\left[\sum_{i=1}^{n} S_{i} \mid N(t)=n\right] \\
& E\left[\sum_{i=1}^{n} S_{i} \mid N(t)=n\right]=E\left[\sum_{i=1}^{n} U_{(i)}\right] \quad \text { by Theorem 4.1 } \\
&=E\left[\sum_{i=1}^{n} U_{i}\right] \\
&=\frac{n t}{2} \\
& E\left[\sum_{i=1}^{N(t)}\left(t-S_{i}\right) \mid N(t)=n\right]=\frac{n t}{2} \\
& E\left[\sum_{i=1}^{N(t)}\left(t-S_{i}\right)\right]=E\left[E\left[\sum_{i=1}^{N(t)}\left(t-S_{i}\right) \mid N(t)\right]\right] \\
&=\sum_{n=0}^{\infty} E\left[\sum_{i=1}^{N(t)}\left(t-S_{i}\right)|N(t)=n| P\{N(t)=n\}\right. \\
&=\sum_{n=0}^{\infty} \frac{n t}{2} P\{N(t)=n\}=\frac{t}{2} E[N(t)]=\frac{\lambda t^{2}}{2}
\end{aligned}
$$

Alternatively, we have

$$
\begin{aligned}
& E\left[\sum_{i=1}^{N(t)}\left(t-S_{i}\right) \mid N(t)=n\right]=\frac{n t}{2} \rightarrow E\left[\sum_{i=1}^{N(t)}\left(t-S_{i}\right) \mid N(t)\right]=\frac{N(t) t}{2} \\
& E\left[\sum_{i=1}^{N(t)}\left(t-S_{i}\right)\right]=E\left[E\left[\sum_{i=1}^{N(t)}\left(t-S_{i}\right) \mid N(t)\right]\right]=E\left[\frac{N(t) t}{2}\right]=\frac{\lambda t^{2}}{2}
\end{aligned}
$$

Example 4.2Distribution of S_{n} Let E denote the event that exactly n questions by time 1, given the event E, what is the pdf of S_{n} ?
Solution Conditioning on E, S_{n} has the same distribution as $\max \left\{U_{1}, \ldots, U_{n}\right\}$, where U_{1}, \ldots, U_{n} are iid uniform distribution random variables in $[0,1]$.

$$
P\left(S_{n} \leq y \mid E\right)=\prod_{i=1}^{n} P\left(U_{i} \leq y\right)=y^{n}
$$

5 Split or Merge

Theorem 5.1 (Split a Poisson Process)

Suppose that each event of a Poisson process with rate λ is classified as being either a type-I or type-II event. And the event occurs at time s will be classified as type-I with probability $P(s)$ and type-II with probability $1-P(s)$.
If $N_{i}(t)$ represents the number of type-i events that occur by time $t, i=1,2$, then $N_{1}(t)$ and $N_{2}(t)$ are independent Poisson random variables having respective means $\lambda t p$ and $\lambda t(1-p)$, where

$$
p=\frac{1}{t} \int_{0}^{t} P(s) d s
$$

Proof

$$
\begin{aligned}
& P\left\{N_{1}(t)=n, N_{2}(t)=m\right\} \\
= & \sum_{k=0}^{\infty} P\left\{N_{1}(t)=n, N_{2}(t)=m \mid N(t)=k\right\} P\{N(t)=k\} \\
= & P\left\{N_{1}(t)=n, N_{2}(t)=m \mid N(t)=n+m\right\} P\{N(t)=n+m\}
\end{aligned}
$$

Consider an event occurs at time s, the probability that it would be a type-I event would be $P(s)$. By theorem 4.1 this event will have occured uniformly distributed on $(0, t)$. It follows that the probability that it would be a type-I event is p independently of the other events.

$$
p=\frac{1}{t} \int_{0}^{t} P(s) d s
$$

Thus we can see $P\left\{N_{1}(t)=n, N_{2}(t)=m \mid N(t)=n+m\right\}$ as the probability of n success and m failures in $n+m$ independent trials.

$$
\begin{aligned}
& \quad P\left\{N_{1}(t)=n, N_{2}(t)=m\right\} \\
& =P\left\{N_{1}(t)=n, N_{2}(t)=m \mid N(t)=n+m\right\} P\{N(t)=n+m\} \\
& =\frac{(n+m)!}{n!m!} p^{n}(1-p)^{m} \cdot e^{-\lambda t} \frac{(\lambda t)^{n+m}}{(n+m)!} \\
& =e^{-\lambda p t} \frac{(\lambda p t)^{n}}{n!} \cdot e^{-\lambda(1-p) t} \frac{(\lambda(1-p) t)^{m}}{m!} \\
& \begin{aligned}
P\left\{N_{1}(t)=n\right\} & =\sum_{m} P\left\{N_{1}(t)=n, N_{2}(t)=m\right\} \\
= & \left(e^{-\lambda p t} \frac{(\lambda p t)^{n}}{n!}\right) \sum_{m}\left(e^{-\lambda(1-p) t} \frac{(\lambda(1-p) t)^{m}}{m!}\right) \\
= & e^{-\lambda p t} \frac{(\lambda p t)^{n}}{n!}
\end{aligned}
\end{aligned}
$$

Similarly, we show that $N_{1}(t)$ is Poisson with mean $\lambda p t, N_{2}(t)$ is Poisson with mean $\lambda(1-p) t$, and $N_{1}(t), N_{2}(t)$ are independent.

Theorem 5.2 (Merger)

Merging of independent Poisson processes is Poisson.

Proof

6 Compound Poisson Process

Definition 6.1 (Compound Poisson Random variable)

Let X_{1}, X_{2}, \ldots be a sequence of iid random variables having distribution F, and suppose that this sequence is independent of N, a Poisson random variable with mean λ. The random variable

$$
W=\sum_{i=1}^{N} X_{i}
$$

is said to be a compound Poisson random variable with Poisson parameter λ and component distribution F.

Definition 6.2 (Compound Poisson Process)

A stochastic process $\{X(t), t \geq 0\}$ is said to be a compound Poisson process if it can be represented, for $t \geq 0$, by

$$
X(t)=\sum_{i=1}^{N(t)} X_{i}
$$

where $\{N(t), t \geq 0\}$ is a Poisson process, and $\left\{X_{i}, i=1,2, \ldots\right\}$ is a family of iid random variables that is independent of the process $\{N(t), t \geq 0\}$. Thus, if $\{X(t), t \geq 0\}$ is a compound Poisson process then $X(t)$ is a compound Poisson random variable.

Lemma 6.1 ((Song, 2020, PS. 1))

Suppose for a Poisson process with rate λ, an event occurring at time scontributes a random amount having distribution $F_{s}, s \geq 0$. Let W denote the sum of the contributions up to time t, i.e., $W=\sum_{i=1}^{N(t)} X_{i}$. Then W is a compound Poisson random variable, with the same distribution as $\sum_{i=1}^{N(t)} \tilde{X}_{i}$, where \tilde{X}_{i} is independent of $N(t)$ and are iid with $F(x)=\frac{1}{t} \int_{0}^{t} F_{s}(x) d s$.

7 Conditional Poisson Process

Definition 7.1 (Conditional Poisson process)

Let Λ be a positive random variable having distribution G and let $\{N(t), t \geq 0\}$ be a counting process such that, given that $\Lambda=\lambda,\{N(t), t \geq 0\}$ is a Poisson process having rate λ. The process $\{N(t), t \geq 0\}$ is then called a conditional Poisson process.

Remark Note that a conditional Poisson process still possess stationary increment, but do not possess independent increment.

Lemma 7.1 (Property of Conditional Poisson process)

$$
\begin{aligned}
P\{N(t+s)-N(s)=n\} & =E[P\{N(t+s)-N(s)=n \mid \Lambda\}] \\
& =\int_{0}^{\infty} P\{N(t+s)-N(s)=n \mid \Lambda=\lambda\} d G(\lambda) \\
& =\int_{0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} d G(\lambda)
\end{aligned}
$$

The conditional distribution of Λ can be calculated by

$$
\begin{aligned}
P\{\Lambda \leq x, N(t)=n\} & =E[P\{\Lambda \leq x, N(t)=n \mid \wedge\}] \\
& =\int_{\lambda=0}^{\infty} P\{\Lambda \leq x, N(t)=n \mid \Lambda=\lambda\} d G(\lambda) \\
& =\int_{\lambda=0}^{x} P\{N(t)=n \mid \Lambda=\lambda\} d G(\lambda) \\
& =\int_{\lambda=0}^{x} e^{-\lambda t}(\lambda t)^{n} / n!d G(\lambda) \\
P\{\Lambda \leq x \mid N(t)=n\}= & \frac{P\{\Lambda \leq x, N(t)=n\}}{P\{N(t)=n\}}=\frac{\int_{\lambda=0}^{x} e^{-\lambda t}(\lambda t)^{n} / n!d G(\lambda)}{\int_{\lambda=0}^{\infty} e^{-\lambda t}(\lambda t)^{n} / n!d G(\lambda)} \\
& =\frac{\int_{\lambda=0}^{x} e^{-\lambda t}(\lambda t)^{n} d G(\lambda)}{\int_{\lambda=0}^{\infty} e^{-\lambda t}(\lambda t)^{n} d G(\lambda)}
\end{aligned}
$$

Bibliography

Song, Miao (2020). LGT6202 Stochastic Models and Decision under Uncertainty.

